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1. Introduction| Background
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What is Spatially conscious machine learning modelling (spatial ML)?
 Spatial Statistics & Machine Learning
Three approaches:

1)  Inclusion of spatial features in original algorithms (Feature  Engineering)
2) Hybrid Models with spatial statistics (GW – RF)
3) Spatial Cross Validation strategies (interpolation or extrapolation of geodata) 

Deng, He, & Liu,  2023
 Spatiotemporal dependency into machine learning models to predict robberies in Dallas
 Spatiotemporal lag variables can effectively improve the prediction accuracy of machine 

learning models.
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1. Introduction| Scientific Objectives, motivation
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SO 1: Investigate what spatial features can be used for crime prediction and how they can be 
incorporated into a ML modelling workflow. 
SO 2: Evaluate the predictive performance of spatial-conscious machine learning models for crime. 

 Liu, Kounadi, & Zurita-Milla, 2022
• Spatial Lag: Lower errors and reduce the global spatial 

autocorrelation of the residuals 

 Boegl and Kounadi, 2024
 Regionalization:  improves R-squared scores, less computational 

effort than GWR or GW-RF

 Khalfa et al. 2025
 Similar methodological approach: Spatial and temporal unit of 

analysis, independent features, train-test selection,  evaluation 
metric,  fixed number of predicted hotspots = area coverage
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Spatial unit: 200 * 200 meters grid
Temporal unit: month
Precision: XY point & day

2. Data Description| Study area & crime events

Districts/ Grid cells Crimes 2016 / District Crimes 2016 / Month

Training 2015 – Testing 2016
Crime data: 2013 until 2016  (≈ 190,000 events)
e.g., burglaries, robberies, car theft, pickpocketing. 
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Input Features A: freely available data from 
Open Street Map and the Hungarian Census 
Burau

Input Features B: engineered features from 
historical crime data

2. Data Description| Independent Features (23)
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3. Modelling Framework| General workflow (1)

Preprocessing
(OSM & Census)

• Spatial Joins
• Joins
• Distance 

operations
• Topological 

operations
• Disaggregation

Modelling
(1yr rolling window)

• Random Forest 
(RF)

• S_lag RF
• Reg_RF
• LISA_RF

Analysis

• Hotspot 
Transformation

• Hit Rate
• Feature 

Importance
• Maps
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3. Modelling Framework| General workflow (2)

• Modelling Algorithm: Random Forest 

• True Hotspots: grid cells where one or more crimes occurred.

• Predicted Hotspots: grid cells with higher probability of a crime to occur.

• Performance Evaluation: Recall or Hit Rate ( the percentage of the true hotspots that were 

correctly identified)

• Interpretation of Predictive Performance: -Top 5% percentile and a hit rate of 87%. 
“The predicted hotspots cover 5% of the study area and include 87% of the total area where a 
crime occurred”.
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3. Modelling Framework| Spatial ML Models 

S_Lag
 Optimize Spatial 

Weight Matrix
 Moran’s I 

maximize with 1st

Order Queen

 Engineer Spatial Lag 
features for: 

a) count of crimes in 
the previous month 
in the cell and 
b) count of crimes in 
the last 12 months in 
the cell

Regionalization with Ward 
(7 clusters)

LISA
(Local Moran’s I, p-value < 0.05)
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RF

1. Previous month

2. Distance to bus

3. Previous 12M

4. Previous M district

5. % non HU

4. Results| Feature Importance (December 2016)

S_Lag_RF

1. Previous month

2. Distance to bus

3. Previous 12M

4. Previous 12M_lag

5. Same M last year

….

10. Previous month lag

Reg_RF

1. Previous month

2. Distance to bus

3. Previous 12M

4. Previous M district

5. Distance to train

….

Middle Ward clusters

LISA_RF

1. Previous month

2. Distance to bus

3. Previous 12M

4. Previous M district

5. Distance to subway

…

End   LISA features
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4. Results| Predictive Maps
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4. Results| Hit Rate comparison
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RF : 83,9 %

S_lag: 84,3 %

Reg_RF: 84,1 %

LISA_RF: 84% 
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Key Findings
 Spatially-conscious ML models further improve the predictive performance of traditional ML for 

forecasting crime.
 The most significant features are created from fine level spatiotemporal information of historic crime 

events
 Spatial lag related features are among the top important features; Spatial lag ML models perform 

better than Regionalization ML and LISA ML models. 

Next Steps
 Empirical testing in Budapest & Vienna:  period: 2019  -2023, with various crime types
 Spatial features: regionalization algorithms, number of clusters, LISA method, p-value, processing 

spatial groupings, additional spatial lag features. 
 ML algorithm: tuning the hyperparameters, exploring additional supervised learning algorithms, 

testing with nested CV could potentially improve further the predictive performance and/or model’s 
generalizability.

 Units of analysis (space and time) & crime types 

5. Conclusions
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Thank you for your attention !

Spatially Conscious ML models for crime
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